HyMAP is the acronym for Hybrid Materials for Artificial Photosynthesis, the title of the ERC Consolidator Grant awarded to Dr. V. A. de la Peña O’Shea in the 2014 call. The challenging process of Artificial Photosynthesis is based on the use of solar light to convert CO2 and water into energy-useful compounds like CO, methane, methanol and hydrogen – just as green plants do, but replacing the sugars they produce by those simpler compounds. HyMAP aims at developing a new generation of hybrid organo-inorganic materials that are able to efficiently promote, by photocatalytic and photoelectrochemical reactions, the chemical transformations ecompassed in artificial photosynthetic processes. In order to reach this goal, the HyMAP team investigates materials and processes and different scales – from nanoscaled catalysts to pilot-plant reactors.

Photoactivated Processes Unit, IMDEA Energy



Netherlands to Build First Solar Farm That Will Float in the Ocean

Netherlands is building the first solar farm on the surface of the ocean. The project will begin with a test, a 30 square meter solar farm about nine miles off the coast of the Hague. The farm will be positioned between two existing offshore wind turbines and connected to the same cables, meaning the project will not require any additional infrastructure. Offshore solar farms do have advantages over land-based ones. In addition to the lack of land costs, offshore panels tend to receive more sunlight due to the lack of obstacles, and the water acts as a coolant, increasing efficiency a 15 percent. China was pioneered in this area, they have built solar farms on large lakes. But this will be the first floating solar farm built on the open sea, which could pose unique challenges.

Featured link


The HyMAP project is developed by the researchers of the Photoactivated Processes Unit at the IMDEA Energy Institute. The Photoactivated Processes Unit started its activities in January 2016. The main objective of the Unit is to develop of multifunctional materials, reactors and devices able to efficiently harvest light to drive photon-activated processes for energy and environmental application. In addition is also oriented to the deep understanding light-Material Interactions and its effect in the performance.


Funded by